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CURVATURE AND THE EIGENVALUES
OF THE LAPLACIAN

H.P. MCKEAN, JR. & L. M. SINGER

1. Introduction

A famous formula of H. Weyl [19] states that if D is a bounded region
of R? with a piecewise smooth boundary B, and if 0 >y, > 7. > 73 = etc.
| — oo is the spectrum of the problem

(la) Af = @%*oxt + --- + 3%} =yf in D,
(1b) teC¥D) N CDy,

(1¢) ' f=0 on B,

then

(2) — 1. ~ C(d)(n/vol D)¥4(nt ),

or, what is the same,

(3) Z =spe = 3 exp (ynl) ~ (4nt)~4* x vol D (:]0),
: n21

where C(d) = 2x{d/2)!19/>.

A. Pleijel [13] and M. Kac [6] took up the matter of finding corrections to
(3) for plane regions D with a finite number of holes. The problem is to find
how the spectrum of 4 reflects the shape of D. Kac puts things in the follow-
ing amusing language: thinking of Das adrumand 0 < — 7, < — 7, < etc.
as its fundamental tones, is it possible, just by listening with a perfect ear,
to hear the shape of D? Weyl’s estimate (2) shows that you can hear the
area of D. Kac proved that for D bounded by a broken line B,

areaD  length B/4
4nt Jdnt

(4a) Z =

+ the sum over the corners of =T~ 4 o(1) (¢]0),
24rxy
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0 < 7 < 2=z being the inside-facing angle at the corner?, esp., you can hear
the perimeter of such D. By making the broken line B approximate to a
smooth curve, Kac was led to conjecture

7 a;:j _ leni:;/"' +_;.(1 — Ry + o(l) (1{0)

for regions D with smooth B and # < « holes, and was able to prove the
correctness of the first 2 terms. This jibes with an earlier conjecture of A.
Pleijel and suggests that you can hear the number of holes. (4b) will be
proved below in a form applicable both to open manifolds with compact
boundary and to closed manifolds.

Given a closed d-dimensional, smooth Riemannian manifold M with metric
tensor g = (g,,), let 4 be the associated Laplace-Beltrami operator :

1 Jd .. [det s a
A = mee———r —— i det —_—
Jdetg ox; & & ox;

(4b)

where g~' = (gi/), and let 0 =7, > 7, > 7. > etc. | — oo be its spectrum.
Define also the scalar curvature K at a point of M (= the negative of the spur
2. R} of the Ricci tensor) and partition function Z = sp e’ = 3, exp (y.f)-

i<y

Then, as will be proved in §§4 and 7,
(5a) (4n1)?/?Z = the (Riemannian) volume of M

+-t— X the curvatura integra f K+ i—f (104 — B + 2CY40o(83) ,
3 w 180J v

where f stands for the integral relative to the Riemannian volume element
M

~detgdx, and A, B, C stand for a particular basis of the space of polynomials
of degree 2 in the curvature tensor R which are invariant under the action of
the orthogonal group {see (7.2)]; O(#3) cannot be improved. For d = 2, 104
— B + 2C = 12K?, and an application of the classical Gauss-Bonnet formula

for the Euler characteristic E of M (2zE = f K), (5a) simplifies to
¥

! Kac [6] expresses the corner correction (z?* — y?)/24x7 as complicated integral. D. B.
Ray [private communication] derived it by a simpler argument, beginning with the Green
function G for s — 4(s > 0) expressed as a Kantorovich-Lebedev transform

G(A, B) =z-z'[:°deJ_1:(~/Ta) K, , . (¥5h

sinh mx sinh (z — P)x
— e — Bx — ——— —a— f)x - —
x [cosh(z — |a — B])x winh 7x cosh(y —a — f)x + sinh7x cosh (@ — fix],
in which 4 = ae+=1+, B = bev-13, and K is the usual modified Bessel function. The corner
correction (72 — 7?)/24xy follows easily, and this jibes with Kac’s integral upon applying
Parseval’s formula to the latter.
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area
4t

(5b) Z = +——+—f K2 4+ o™,

esp., the Euler characteristic of M is audible.

Consider now an open d-dimensional manifold D with compact (d-1)-
dimensional boundary B, D = D U B being endowed with a smooth Rieman-
nian geometry, and let 0 > yr > 7 > etc. |—ccand 0=y > rf > 77
> etc. | — oo be the spectra of

4-=4|C*D)YN(u:u=0onB),
4* =4|C*D)N(u:u =0o0nB),

where - stands for differentiation in the inward-pointing direction perpendicu-
lar to B.

Bring in also the mean curvature J at a point of B (= double the spur
of the second fundamental form) and the partition function Z* = spe’“*
= Y exp(y:t). Then, as will be proved in §5,

(6) (4=t)?/*Z* = the (Riemannian) volume of D

* %\4—7! X the (Riemannian) surface area of B

+ ;ﬁx the curvatura integra f K
D

— —;- x the integrated mean curvature f J 4+ o(£3%),
N B

where f stands for the integral over B relative to the element of Riemannian
B

surface area; 0(z*'%) cannot be improved. Kac-Pleijel’s conjecture (4b) for a
plane region D with smooth boundary B and /# < « holes is obtained from
{6) and the Gauss-Bonnet formula (f 4K + {5 = 27 X the Euler characteristic)
for the closed manifold M = the double of D upon noting that the Euler
characteristic of the handle-body M is just 2(1 — A).

The estimates leading to (5) and (6) will be proved not just for 4 but for
any smooth elliptic partial differential operator of degree 2 (2, 3, 4, 5), and
some additional comments will be made about Z = sp ¢! for 4 acting on
exterior differential forms (6). The basic idea, due to Kac, is to make a point-
wise estimate of the pole of the elementary solution of du/dt = 4u and then
to integrate over M to get an estimate of Z = sp e!’. The curvatura integra
coefficient in (5a) is computed directly in §4 and then re-computed (for 4
only) in §7 using more sophisticated algebraic ideas about differential invari-
ants of the orthogonal group. A list of open problems is placed at the end
of the paper [9]. ’
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The new results of this paper are mainly for the case of manifolds with
boundary. For a closed manifold, N. G. de Bruijn [private communication]
obtained the curvatura integra coefficient independently as did V. Arnold
[private communication from M. Berger]. Berger also kindly communicated
his formula for the next coefficient, which suggested the approach in §7.
Berger’s results for closed manifolds can be found in {1]. His method is dif-
ferent from ours, but we arrive at the same formula for the coefficient of ¢
provided his norms 2, [p|? and |R|? are equal to our 44, B, and 2C
respectively.

1t is a pleasant duty to thank M. Kac for suggesting this problem and for
a number of stimulating conversations about it. Thanks are also due to T.
Kotake for help with the Levi sums of §3.

2. Manifolds and elliptic operators

Consider a closed, d-dimensional, smooth manifold M and let g: C*(M)
—C=(M) be an elliptic partial differential operator of degree 2, with O(1) =0.
On a patch U C M, Q can be expressed as

Q = a'g%/ox,0x; + bid/dx; = ad® + bd

with coefficients a = (a/) and b = (b?) from C=(U). By changing the sign of
Q if necessary, we can take the quadratic form based upon a as positive
(3 aiy;y; > 0, y £ 0), and under a change of local coordinates x — X with
Jacobian ¢, a transforms according to the rule @ = cac*, so g = a~! trans-
forms like a Riemannian metric tensor. M is now endowed with this Rieman-
nian geometry, and Q is re-expressed as the sum of thc associated Laplace-
Beltrami operator 4 plus a part of degree 1:

Q=d+h,ho=h | g=_1 9 oigerg
ox; ydetg ox; X 5

Because 4 does not depend upon the choice of local coordinates, Ad is a
vector field.

4 is symmetric (f udv = fv4u) and non-positive (f udu < 0) relative to
the Riemannian volume element Jdet gdx, where {f = {,f always means
fufJdet gdx. Q enjoys the same properties relative to some volume element
evJdet gdx if and only if the vector field 40 is conservative; this is the same
as to say that the exterior differential 1-form dual to this field is an exact
differential (= dw), as is plain from the fact that, for a patch U and compact
u and v € C=(U),

- fu(uQv — vQu)e” = fU(u grad v — v grad u)(h — g~ grad w)
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cannot vanish unless # = g-! grad w (Nelson [12]), where grad = (3/0x,, - - -,
0/0xy).

Consider, next, the elementary solution e =e(z, x, y) of 8u/ot = Qu com-
puted relative to the volume element Jdet gdx and recall the following facts:

(1a) 0 < eeC[(0, ©) X M?],

(lb) ae/at = Q.e= Qfe,

(1c) fe\}detgdy =1,

(1d) lim e 1ge = — L [xy]2,
tin 4

where Q* is the dual of Q relative to Jdet gdx, and [xy] is the Riemannian
distance between x and y; see [16] for (d) and {10] for the rest.

Now if Q is symmetric relative to the volume element e»J[det gdx, then
e(t, x, y) exp [— w(»)] is symmetric in x and y, and since its spur Z= fe(t, x, X)
converges, e'?:f — fef is a compact mapping of the (real) Hilbert space
H = LM, evJdet gdx]. This implies that Q has a discrete spectrum

(2) O=po>mni=r2> ete. T—oo

with corresponding eigen functions f, e C*(M) forming a unit perpendicular
basis of H; in addition,

e = ’Eo exp (Tnt)fn ® fn

with uniform convergénce on compact figures of (0, o) X M?, and the spur
Z is easily evaluated as (see for example [10])

(3) Z = féo exp (y.0)fie? = ’E] eXp (7x1) -

Kac’s method for the proof (4a) is now imitated to obtain (5a) : one estimates
" the pole e(t, x, x) locally and then integrates over M. This is done in §§3
and 4 using a method of E. E. Levi; the actual estimate is just as easy for
the general Q, so the condition that the vector field 20 be conservative is not
insisted upon.

Now let Q = 4 + hd be defined on a smooth open, d-dimensional mani-
fold D with smooth, compact, (d — 1)-dimensional boundary B, suppose that
g = a~! is positive and smooth on the whole of D so that it induces a nice
Riemannian geometry on D, and let the vector field 43 be smooth on D too.
Both Q- =Q|C*(D)N(u:u=0o0n B)and Q" =Q|C* D) N (u:u =0
on B), - standing for differentiation in the inward-pointing direction perpen-
dicular to B, have nice elementary solutions e = e* subject to ’



48 H. P. MCKEAN, JR. & 1. M. SINGER

(4a) 0 < eeC[(0, ) X D7,
(4b) 9 — Qe = Qfe,
at

Q* being the dual of Q relative to Jdet gdx,

(4c—) [ et o,
(4c+) fﬂe*:l,

(4d) Tmtlge< —%[.xy]'—’,
(de—) e-=0 on BXD,
(4e+) et=0 on BXD,

and for Q symmetric relative to some volume element, the spectra are as
before except at the upper end:

(52) 0>y > > etc. | — oo,
(5b) O=¢pr > =rfete. | —oo,

and the formula for the partition function still holds:
(6) *=[ et nn=Tep @,
n
so that (6) can likewise be derived by estimating the pole e*(¢, x, x).

3. Levi’s sum for the elementary solution

Given closed M and Q = 4 4+ hd as above, one can express the elementary
solution e = e(t, x, y) of du/dt = Qu by means of a sum due to E. E. Levi;
this computation has been carried out in a very careful manner by S. Mina-
kshisundaram [10], but it will be helpful to indicate the idea in a form suited
to the present use.

Consider a little closed patch U of M with smooth (d — 1)-dimensional
boundary B, view U as part of R?, extend Q' = Q| U to the whole of R? in
such a way that the coefficients of the extension belong to C~(R%) and Q' =
3%/0x: + - - - + 0%/9x% near o, let €’ be the elementary solution of du/dt = Q’u,
and let us prove that inside U X U,

(1) '| ¢ — e| < exp(-constant/t) (z]0)
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with a.positive constant depending only upon the distance to B.

Proof. Bring in the elementary solution e’ of du/dt = Qu subject to u = 0
on B. Given a compact function v ¢ C=(U), u = f(&’* — e)v solves du/dt = Qu
on (0, ) X U and tends to O uniformly on U as ¢ | 0. But this means that
in the figure [0, £] X U, |u| peaks on [0, #] X B, so that by an application
of the estimate of Varadhan [(2. 1d), (2. 4d)]%,

f(e” — e

R being the shortest (Riemannian) distance from (v 5= 0) C U to B. The rest
of the proof is self-evident.

Because of (1), it is permissible, for the estimation of the pole e(t, x, x)
up to an exponentially small error, to replace M by R? and to suppose that
Q = 8%/ox} + - - - + 0%0x: far out; this modification of the problem is now
adopted,

Define now Q° to be Q with its coefficients frozen at y e R4, and let €%¢, x, y)
be the elementary solution of du/dt = Q% evaluated at ¢t > 0, x ¢ R?, and
the same point y ¢ R¢ at which the coefficients of Q° are computed:

lu] < max
[0.:.]xB

< exp (— R¥/5n|vllis

(2) e(t, x, y) = (4at)~42 exp (— | a®(y — x — b°t) |?/41)

with an obvious notation. Because of (2. 1b), (2. Ic) and (2. 1d),
(33) e(t’ X, y) - eo(t’ X, y) =ftds'a_f e(s, X, ')eo(t -8, y)
| o osd &
= f ‘ds f (€°Q%e — eQ%"
0 R4
= [las[ el x 2@ = Q% =5, -, 3),
0 RO

in short,

(3b) e=¢e +edf,
with # denoting the composition on the final line of (3a) and

f=(Q — 0%t —s,x,y).

Upon iteration, this identity produces the (formal) sum for e:
(4) e=e°-|-};1e°#f#-~#f (n-fold).

1 (2. 1d) denotes equation (1d) of §2.
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Actually this formal sum converges to e uniformly on compact figures of
(0, o0) X R%*¢; the main point is that since

Q@ =8%xi+ --- + 0%ox2 near oo,
Ga  ifl <

|x —y?

tZ

AT R
S Cat_(¢+1)/2 exp (—- C4 I.x —y ]2/1) >

¢y, - -+, €4 standing for positive constants, as can easily be verified by a direct
computation, and this leads easily to the bound

(5b) ¥ I S (/2N P2 exp (— e | x — Y [P0

Accordingly, the formal sum (4) converges rapidly to a nice function e of
magnitude

(6) |e]gz_(c_5_@,

5o e exp (— colx ~y I,

which satisfies (3b). A moment’s reflection shows that e is an elementary
solution of 6u/dt = Qu. But du/dt = Qu has only 1 elementary solution sub-
ject to (6), so e = (4) is it. This is proved by noticing that any elementary
solution subject to (6) is also a solution of (3b), and then proving that (3b)
4 (6) has just 1 solution.

4. Estimation of the pole

Levi’s sum (3.4) can now be used to estimate the pole e(t, x, x) for ] 0,
up to terms of magnitude r1-2/2: '

(1) (4zt)t%(t, x, x) = 1 + %K - %div h— % |h]2 + 012,

in which K is the scalar curvature (=the negative spur ; R} of the Ricci-
i<j

tensor), div 4 is the (Riemannian) divergence [= (det g)-*dhi(det g)t/ax.],

and |A| is the (Riemannian) length (= g;;4*h?). (1) can be integrated over

M to get an estimate of Z = fe(t, x, x) (since f divh = 0):

(2) (4zt)d’22=fl+-g-fK—%f[h|'~’+O(t2),
esp., if Q = 4, then A = 0 and (2) = (1. 5a). A little extra attention to the

proof, which is left to the industrious reader, shows the existence of an
expansion
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(3) (drn)e2e(t, x, xy = 1 + kyt + k0> + - -+ + kyt* + o(t**?).

This was proved by S. Minakshisundaram [10] for Q = 4; the only novel
point is the evaluation k, = K/3 — (div h)/2 — | h|%/4. k, is computed in §7,
using a more sophisticated method.

Proof of (1). e can be replaced by the sum (3.4), and the terms of index
n > 4 can be neglected in view of (3. 5b). Put x = O for simplicity and bring
in new coordinates on R¢ coinciding with the old near o and such that

(4) 8if(X) = 04y + —;—Rikﬂxkxz +0(lx]% near o,

R being the curvature tensor associated with g; this is accomplished by ap-
plying the exponential map to the tangent space at 0 to obtain coordinates
on a patch and then fixing things up outside [3, Chapter 10]. An estimate of
f=(Q — Q%t — s, x, y) finer than (3. 5a) is now possible:

[x] |y —x3
t2

(5) |f(t’x’y)|_<_cl(
+ LD =2 s texp (= o x =y ),

where ¢;, ¢., etc. stand for positive constants. This is used to prove

cse—c‘lzl’/(t-sl)

O I B e

X( x| ly—x + [x] |y — x| + l) e“’alz‘?ll’/(-ﬁ;w
& (57 — $2)°%

4 2 -€, 2,
X(]y} + l);l +I)e 19128,

? 5472
¢ s t—s o
< c5t‘¢’2f dslf dsyAf L= cgt?-92,
0 o 5 — 35

and the similar but easier bound

(6b) [ BTETBF| < a2,

which shows that, up to terms of magnitude < constant X #2-7/2 one is left
with

(7) e(1,0,0) = €%, 0, 0)
¢ —_—
+ f 0d.5' f Rde"(t - 5,0, x)(@ — @%e%Gs, x, O)det gdx.
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A moment’s reflection will convince the reader that, up to the desired preci-
sion, the integrand e°(r — s, 0, x)(Q@ — Q%es, x, 0)Jdet g can be replaced
by the product of a factor 1 4 a linear function f of x + o(t) + o(] x |?) and
the expression

() e~ 17124 0-8) [_1_ o%gt! O)x,.x; &
e — 9177 L2 xgom,  + oxd;
3 1 9 i > 2
—_giijdet g} (0)x
+(an Wetg x| g()"ax

i -|z|2/4s
RIS Caidd
0x; ox; ) (4rs)e?

j

-+

et (xx;, By
— (dz1)-472€ [ g (Oyx,x, [ X __LL)
(4xt) (4zry2z L 2 axkax,( e

0 1 d i 7———) XX ahi x,x,‘]
tijdet g (0)22L — (0\
( ox,. Jdetg axtg 8)( 2s 2s

where r = s(t — s)/t. Now the factor alluded to above (8) can be replaced

by 1, since f X (8) integrates to O while the last 2 terms contribute < cgt®~9/2,
Consequently, up to the desired precision,

(2)  tY(dnt)? 20 %] = 11 f :ds f B

_ l a2ng
2 ox.0x;
< 1 pair, 2 unequal pairs, or 2 equal pairs)
1 3%
0)3:.8;
4 9x.0% z( ) Lloj
—l( o _1 9 'wdetg)(O)é,,,—_l-ih_.(O)au
dx, Wdetg ox;
1 aZgii 1 azgij ) gii
=_——==_ 4 = summed for i # j) + —
6 o T3 Txox, 4 2 Toxi
_ 1 o% 1 3@ 1 0 9 giiderz — I okt
4 9x] 2 ox; ~detg ox; 2 ax;,

all evaluated at x = 0.

Cartan’s formula (4), combined with the skew symmetry of the curvature
tensor R, permits an additional simplification of (9a) to
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2o A2 24t
(9b) _ 1 gy 1'3detg 1 %" 1 gy
6 0x,9x; 2 ox? 12 3x% 2
1 1 1 1 .
= — ']"gRifij - —6—Rz'jij + 1—8Rz‘j1j - ?dlv h
=~ tsr,,—Ldve=K_Lagn,
3 i< 2 3 2

and (1) follows upon noting that

(10) (471)2/2€%(t, 0, 0) = e-1r O I8e — | _ % |h 2+ o(t?) .

5. Manifolds with boundary

Now let D be an open manifold with compact boundary B as at the
end of §2, M = D U B U D* the (closed) double of D, and @ the double
to M of a smooth elliptic operator of degree 2 on D, and, as in §2, define
Q-(@*) to be Q|C=(D) subject to u = O0(u- = 0) on B. The coefficients
(det g)1dgi/(det g)*/dx; occurring in @ jump as x crosses B, but du/6t = Qu
still has a nice elementary solution e of class C*[(0, ) X (M — B)*]N C'(M?),
approximable even on B.by Levi’s sum, and the elementary solutions e* of
du/dt = Q*u can be expressed on (0, ) X D? as

(1) et x,y)=e(t, x,y) xelt,x,¥),

)"eD* being the double of y € D. By use of this formula, Z* = f e“(t, x, x)
n
can be estimated as follows:

(2) (4z1)4/*Z* = the (Riemannian) volume f 1
) D

+ %w@ X the (Riemamiian) surface area f 1

n
+ L f flux 4 + L x the curvatura integra f K
2J s 3 D
s
- % X the integrated mean curvature | J
B

_L 1 __t_ 2 3/2
2fbd1vh 4fb|h| + o(t?).

To explain the new terms involved in this formula, pick a self-double patch
U of M covering a patch U N B of B endowed as in the diagram with local
coordinates x such that
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D*

x,>0

a) 1>x,>0in UND, b) x,=0 on UNB, ¢) x,(x*) = — x,(x), and
d) the positive x,-direction is perpendicular to B. This has the effect that

(3a) 8y(x*) = —gy(x) for i=1<jori>j=1
=+gyx)fori=j=1orij>2,
(3b) g(x)=0fori=1<jori>j=1onB,

(3¢c) Jdetg/g,,dx,- - -dx, = the element of (Riemannian) surface area on B.

Now [ stands for integration relative to Jdet g/g,,dx,- - -dx,, flux h is the
(outward-pointing) flux of 4 at a point of B(= — Jg,;h'), and the mean curva-
ture J at a point of B is (double) the spur of the second fundamental form
[=(g'' det g)' g,;/det g]', representing (twice) the sum of inner curvatures

1 Here * stands for the one-sided partial in the positive 1-direction perpendicular to B.
To prove that (g'! det g)*+v/g,,/det g is (double) the spur of the second fundamental form
of B, it is preferable to further specialize the local coordinates on U so as to make

_ gul0
£=\ on

The second fundamental form f is the (Riemannian) gradient along B of the inward-point-
ing unit normal field n:

)onUandg,,:l on UNB.

ans | fi - i -
fij= a_:,‘ + {ii,}nk = { {j] = the Christoffel bracket i, j22).

Computing this for the special g adopted above gives ; h~'r, so that double the spur is

sp -1k = (1gdet i)y = (1g g det g)- = (g'' detg)'/det 2,
as desired (g1' =g,; =1 on B).



CURVATURE AND EIGENVALUES 55

of 2.dimensional sections perpendicular to B. Because of Green’s formula
(fp divh = fpflux h), a little cancellation occurs in (2) for @*. (2) = (1.6)
for @ = 4 (h = 0). The proof of (2) is broken up into a number of steps.
Step 1. Consider a subregion D’ C D at a positive distance from B. Varad-
han’s bound (2. 4d) implies that {.e(t, x, X) < exp (— ¢,/t), so by (4.1),

(4a) (4zt)a/2fulef(t, X, X) =fn’[1 + %K — .%- divh — % LA |2]

+ an exponentially small error,

esp., it is enough to estimate [, ,pe=(¢, x, x) for such a patch U as described
above. A close look at Levi’s sum will convince the reader that (4rf)2/2
funpe*(t, x, x) can be developed in powers of 4 7. B can be covered by a
finite number of patches U of small total volume, so terms like ¢ X vol U
can be neglected: they can only influence the coefficient of 13/2, As a simple
application of this fact, the first term €%z, x, x) of the expansion of e*(s, x, x)
contributes

4b) . (bznv zf €%(¢, x, x) =f 1 + an error of magnitude
rnb uvno
< a constant multiple of t X vol U,

so that, in view of (4a) and the fact that (3. 5b) still holds, it suffices for the
proof of (2) to check that

(52) dnnee[ e, x, %)
unbD
= lJ4mf 1+ if flux & + o(t X vol U},
4 rns 2J vng

(5b) (Azt)er? f np€ $1(2, X, X)

11 D,
=_Lf (1 detg) o L ot X vol U),
6J uns detg

(5¢) (47rt)d’2fvnée° $1(t, x, X) = o(t X vol U) .
Step 2 [proof of (5a)].
(6) (dnt)er? f V%, )
=f dx, - - -dxdflddetg exp {— g(X)V[x — x — b(X)1)*/4r}dx,
ungB 0

1 .
=f dxy - - - dx,,f Jdet g exp (— g X3/t — fx, — | b |?/4)dx,
Uns 0
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where Q = 4 + hd = a3? + b3 and f = g,.b*; the following simplifications
can be made by ignoring negligible terms:

(a) Jdetg can be replaced by Jdet g° + (/det g)'x,, where o stands for
evaluation at x° = (0, x,,- - -, x4) € B, since

1 2
f xXdx,e" 15/t < 132,
0

(b) exp (— g1 x4/t — fx;'— | b|*t/4) can be replaced by
e-ohriry(1 — ghxi/t — f°x;) for the same reason. (0 < e — 1 + x < x%2 for
x>0)

©) f can be replaced by f smcef eI/t < exp (— caft) .

After these simplifications, (6) becomes

(7) fUn”dx2 - dxgJdet g° f:e"'?l’f"dxl
(’Jdetg)'_ o _-x_'} __ 40 ]
x[1+————mxl g~ oxy

up to a negligible error, and performing the inside integral gives

(8) %J‘MI Jde‘ﬁdxz - dx,

UNEB ~
Jdetg 1 [ (Jdetg): g o]
2 dxy - dXgae | e — 2U O
2 vnr gl Ngh L ~detg® &h

fois now‘computed with the aid of (3):

11 [Jat o)
fo — goo — go (ENAELR) | o
Jdetg

CC T R T

and (5a) follows.
Step 3 [proof of (5b)]. (5b) is not so cheap.

(9a5 (4rr)22e® # f(t, x, x)

_ annyere exp{— |8V2 )Y — x — b)(t — $)}IZ/At — 5))
“xneas Eo0,
exp {— | g°(0)[x — ¥ — b(x)s] |2/4s) '

X
(4z5)*’?

Jdet g(y)dy
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X {[gff(y) — g(x)]

[ 419g”.(x)(yk — X — b)) UD: — X — b(x)$)

_ 8:5(X) » hi B (XY — X0 — bk(x)S]l
20 ] [b(y) — bix)] = .

(9a) can actually be replaced by

t g2 (z) (y=-2)12rdr
d f d ' Jdet
(%9b) fo s e Gy det g(x)dy

{[g;j(y) . gfj(x)]l_ gzk(-x)(yk _ xk)gjl(x)(yl - -xl) gij(-x) ]
4s° . 4s

— [fi() — Fi(0)] 2:x(X)(Ve — Xi)
' 2s

up to the desired degree of precision, where
r=s(t — s, f/ = (det g)~*ag/(det g)}/ax; (j < d).
For example, to replace the first exponential in (9a) by
exp [— | 820 — %) [2/4(t ~ s)],

it suffices to note the following points:

(a) The integration over R? can be restncted to the figure |y —x |-
< (t — 5)?/° since, for t | 0, the remainder makes a contribution of magnitude
smaller than

P cealy—z2/ (e _ a2
0 jy-zi2(e-0)2/5 (z — s)d/2 sd/2

X (terms like s-2|y — x {3, s~ |y — x|, etc., replaceable

by ¢;s-/2 after reducing ¢, to ¢, < ¢,)

t ds ~e4lwi?sy
< csf —_ dw_e_l___

oJ s J wis-gs re/?
< Cef e-cr(t-945r < cse“Tﬁﬂ/‘_ s
ofs
which is negligible.

(b) Performing the integral just over y — x < (# — 5)>% and using e-1 — ¢~ 2
< (B — A)e 4(0 < 4 < B) to estimate the difference between the 2 inte-
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grands, one finds that the indicated replacement produces an error of magni-
tude smaller than

¢ —epply-xi¥/t~9)
Cgtd/zf dsf ayf
0 ly-21< (t-9)2/5 (t — 5)4/2

T -ecyoly-21%/s
><[ly—--x—l---|-]y—_7c|2.|.t__s]_e;m_i_z_9

t— s 54/2

X (terms like s-2 ]y — x |3, s71|y — x|, etc.)

tft—s
.<_C11f »\/ = Cit,
[ S

which is also negligible after integrating over U N D.

(c) Finally, one makes use of the fact that for the new exponential, the
integral over |y — x| > (¢ — 5)*® is likewise negligible.

(9b) is also to be integrated over U N D; for this purpose, similar estimates
permit us to replace it by

e-l9%(y- ) %47 ,v _
(9c) f fRd T Jdet g°dy

x {[gij(yl’ x0) — gu(x)][ ghr: — ng'}z(}’z —X) 82?; ]

— U0, ) — fr S =5 |,
2s
A has the following meaning: for fixed x® = (0, x,, - - -, x,) € B, £ is a broken
line with the same corner as g at x, = O (and no other corners), while f is a
step function with a single jump at x; = 0 agreeing with f at x, = 0*.
Do the integration { .-1dy.---dy, and use the special form of g° [(3b)].
This gives

(10 ) f‘df+u e—q?l(‘yl—zl)2/4rd
a 2 emha
X {[é”% x°) — é”(x)][ 48501 — X,)?

4r2

g
+ 3 fkgazgz,—— 2;]

— om0 — ft(x)]—————g'z"(yz‘ %)}
S

f f e oy ~2)%4r
LA Nadrr/gh
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1 0y g1 (&) — x1) &
x {180, 1) (x)][—————-—~—4., o]

— T [8Y0n, x°) — g(x)) 2L gv

%, j*
— /'O ) — f‘(x)]—f—*(yl — x}
S

(3a) implies that for i=j=1or i, j>2, §'i(y,, x) — g(x) = (y; — XD
or — (¥, + x,)g¥" according as y, > O or y, > 0; also f1n, ¥°) — fi(x) =0
or — 2(det g)-1/%(g'1{det g)- according as yi>0ory, <0, g /det g being
even across B, so (10a) simplifies to

o [

detg) g°
+ 2(x, + W ije g1z (8"~ 8 _11w}.
* ) Z & 2t + det g s

Do next the integral fi(10b) vdet gdx,, replacing g by g°, extending the
integration from 1 to + <o, and changing

f °°d.x1 f _I'dw,,into f ’ dw, f -w'dx, :
0 - - 0

(11) Jdetg fdsf e 011w1/4r w,

- \4”’/3"1
% [—21_gu((g‘1’413g:01 _%}

- e 2

2 t

- 3 e TG g 1]
2 A

2 igp g0 15 —8) (g*Jdetg) ¢ — sl
,§g ghign = S

Jet 2 1 (g"vdetg) J
= tjdet g* X [ g" 0-1_ 6 N8/
Vet g X | S B, 8T s S

= — gV e
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since gi/°g;; = — (det g)-Jdet g. An integration f,,x(11)dx,- - - dx, now gives
the desired formula (5b). ‘

Step 4. The proof of (5c) is practically the same, so it is left to the in-
dustrious reader.

6. 4 on differential forms

Given a closed manifold M, let 4 act on the space A? of smooth exterior
differential p-forms (p < d). A? is a pre-Hilbert space relative to the inner
product (f, f) = f < f;- f» >, < fi, f» > being the Riemannian inner pro-
duct of p-forms at a point of M, and 4 can be expressed as — (dd* + d*d),
d: 47" —» A?(1 < p < d) being the exterior differential and d*: ¢! —
A7(0 < p < d) its dual relative to the above inner product. 4 acting on A?
is symmetric with a discrete spectrum:

O0>re=n=r>cetc. | —oo,

the corresponding eigenforms f form a unit perpendicular basis of A7, the
sum

er = ,§o exp (7:0)f» @ f.

converges uniformly on compact figures of (0, ) X M? to the. elementary
solution of du/dt = Au for p-forms and the spur Z? = 3 exp (y.f) of €' on
AP can be expressed [14] as the integral over the manifold of the pole
spe? = 3] exp (yal) < fu, fn > 1 ZP = fsper.

Define Z to be the alternatingsumof Z?(p < d): Z =2°— 2" + ... +2°.
Then

(1) Z = the Euler Characteristic E of M,

as will be proved below. Poincaré duality makes this trivial for odd dimen-
sions (Z? = Z%-7); also, in 2 dimensions Z° = Z2 for the same reason, so
from (1. 5b) and (1) it follows that for d =2,

(2) Z!=22'_E = azrea—_E+ fK2+o(:)

b 44

Given a number y < 0, define 3~ to be the eigenspace of p-forms f such that
4f = 7f. By de Rham’s theorem [14],

(3a) dim3®—-dim3'+ ... +dm3¢=F for r=0,
so (1) is the same as

3b dim3®—dim3' + ... +dim3¢=0 for y<O.
(3b) 7
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Chern [4] discovered a beautiful extension of the classical Gauss-Bonnet
formula to manifolds of even dimension d > 2. Chern’s formula states that
fC = E. C is a (complicated) homogeneous polynomial of degree d/2 in the
entries of the curvature tensor, reducing to the classical integrand K/2x =
— R%/2x for d = 2. Because of the complete cancellation of the time-depen-
dent part of the alternating sum Z, it is natural to hope that some fantastic
cancellation will also take place in the small, i.e., in the alternating pole sum:

0 odd

(4) spe’ —spe? + .- +spe?={ + o(l) for d{
C

even

Poincaré duality does it for odd ¢ with o(1) = 0, but the even-dimensional
proof eludes us, except for d = 2; in which case

(5) spe°—spe‘+spe2=C+-;—AC+o(t2)

(sce [8] for additional information for d = 4). The proof of (5) is postponed
until after the

Proof of (1) = (3b). Choose y < 0, let 32(p < d) be the corresponding
eigenspaces, and make the convention that 3-! = 39*1 = 0. 4 = —(d*d +-dd*)
commutes with 4 and d*, so d3»-! 4+ d*3r+* C 37, Because d° = 0, (d3»-1,
d*3r+1) = (d*3#-1, 37*1) = 0, so the sum is direct, and it fills up the whole
of 37(= d3»-'@ d*37*1) since, for f C 37,

(f, d37°7) = (d*f, 37" = 0, (f, d*3»*) = (df, 32°%) = 0
make d*f = df = 0, so that yf = 4f = 0 and f = O(y % 0); esp.,
dim 37 = dim d37-! 4+ dim d*37*! (p < d),
and so
(6) pé;d(—- 7 dim 37 = 3 (— dim d*3°? + dim 327 — dim d3%7).
But 327 = d3%2-1@ d*3%7+1, 50 that

dim 3?7 — dim d*3% — dim d3%r
= dim d3%#-! 4+ dim d*3%*! — dim d*d3*7-! — dim dd*3*7** > 0,
and also
dim 3% — dim d*32» — dim d3?»
= dim 43%? — dim 4*3?? — dim d3?%»
< dim dd*3?%? + dim d*d3?? — dim d*3%7 — dim d3*?» < 0 ;
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in brief, dim 3% = dim d3%? 4 dim d*3?7, and the whole of the alternating
dimension sum (6) collapses to 0.
Proof of (5) (d =2). 3! =d3°@d*32for y < 0, and for fe 3°,
|df||? = (df, df) = — (d*df, ) = — 4, ) = — 7 lIfI)?
with a similar result (||d*f||2 = — 7||f|}?) for f e 3% Because of this,
2 exp () < dfy, df, > + 7 exp (ri) < d*f;, d*f, >
= —Zrexp(r)<f.fi>

with a self-evident notation. But, for f e A°,

. Of of 1 e
d ’ d =gl 7 = —A A >
< df,df > gaxiax,- 2f f4f
so, by the Poincaré duality between 3° and 32,

B g? spet = — N exp (i) < £, £ > =2 L exp (o) < dfs, dfy >

= T exp (AO[4(P)? — 2f24f}] = Aspe® — 2% spe°,
or, what is the same,
%(spe° —spe! 4+ spe?) = dspe’.

sp e° has an expansion beginning with a multiple of ¢-! and proceeding by
ascending powers of ¢ as stated in §4, and a little extra attention to the proof
shows that the formal application of 4 to this expansion gives the expansion
for 4spe’. Consequently, (4.1) implies

spe® —spel 4-spe*=B + -;—AC + o(t?)

with C = the Gauss-Bonnet integrand K/2z, and to complete the proof of
(5), it remains to check that B = C. Pick local coordinates so that Cartan’s
formula (4.4) holds. A moment’s reflection shows that B can be expressed
as a (universal) combination of second partials of g;,(i, j < 2); as such, it is
a (universal) constant multiple of the one nonzero component R;,,, of the
Riemann tensor, and the constant can be identified as — 1/2z by using the
Gauss-Bonnet formula in the special case of the Riemann sphere:

2=E=f(spe°—spe1+spe2)=B

= constant X f Rys» = — constant X 4r.
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7. Algebraic computation of %, and %,

The style of proof just used to finish the verification of (2.5) will now be
exploited to compute the third coefficient of the Minakshisundaram expansion
(4.3) for Q = 4:

(1) T8F(10A B 4 2C) 4+ constant X 4K,
with

(2a) A= (i‘:_‘,j R, )= K?

(2b) B= ng (Z Rijiu)?,

(2¢) C = i.j.Zk.l(RijkL)z .

The constant multiplier of 4K in (1) is not known, but {,4K = 0, so

1
3) . sz__f 104 — B + 2C),
(3) x> 180 M( +20)

as needed for (1. 5a); in any case, this constant is universal, i.e., it is the
same for all manifolds M. The method will also provide us with a new deri-
vation of the formula &, = K/3. A short table of special expansions will be
helpful for the proof; in this table Z is computed up to an exponentially
small error for several standard manifolds. D?(D?) is the 2(3)-dimensional
Lobachevsky space modulo a discontinuous group of motions. ‘

Pick exponential coordinates on a patch about a point 0 ¢ M as for (4.4).
The coefficients of the power series expansion of g about o will be poly-
nomials in the curvature tensor R and its covariant derivatives [3, Chapter
10, §4], and it follows from this and from Levi’s sum for the pole of e that

TABLE

M | K A B | C Z/(4zt)d’? x vol M

5t 11 N A i
Vxt smof_ =14 3 + ]5 +.
5 3 9 12 6 e‘=1+l+;t’+...
et/ [t ezt 1 '3
2 —_— —_— e =] —= _— .
b ! ! 2 2 vt fo sin Avx dx=1 3t T

D | -3 | 9 2 |6 e't=1—t+-;—t’+...
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the coefficients of (4.3) are expressible as polynomials of the same kind. A
scaling argument now gives the degree of these polynomials. Change g into
C%(C? > 0). Then 4 is changed into C-24, and the pole of the elementary
solution becomes e(t/C?, o, 0)C-%, so that k, is simply multiplied by C2»,
But also, an /-fold covariant derivative of R(C?g) is a multiple of C?*!. Con-
sequently, k, = k,(g) is a “homogeneous polynomial” of degree 2n in R and
its covariant derivatives, if to an /-fold covariant derivative is ascribed the
degree 2 + I, esp., k, is a form of degree 1 in R, while k, is a form of degree
2 in R plus a form of degree 1 in second covariant derivatives of R. Clearly,
the coefficients of these forms depend upon M only via the dimension.

The next step is to exploit the fact that an orthogonal transformation of
the tangent space changes one exponential coordinate system x into another.
Because the pole of e depends on x only via Jdet g, which is an orthogonal
invariant, the coefficients of its expansion are likewise orthogonal invariants,
esp., ky is an invariant form of degree 1 in R, and as such, it is a constant
multiple of K = — Z Ri;:; [19, Chapter 5]. This constant depends upon the

dimension of M only, so to complete the evaluation of k,, it suffices to check
that the constant is dimension-free and to compute it for M = 52, say (see the
TABLE). To settle the first point, look at a product manifold, M = M, X M.,.
AM) = AM)R 1D 1@ IM,), so e(M) = e(M,)® e(M.,), and it follows
from (4.3) that k(M) = k,(M,) + k,(M,). But also R(M) = R(M,)@® R(M.),
so that K(M) = K(M,) + K(M,), and varying the dimension of M, leads at
once to the proof.

k, is not so simple.

Step 1 is to notice that the forms of degrees 2 and 1 into which &, is split
are separately invariant under the action of the orthogonal group. As stated
before, the coefficients of these forms depend upon dimension only.

Step 2. For d > 3, the space of curvature tensors at a point of M, viewed
as a representation space of the orthogonal group 0(d), splits into 3 irreduci-
ble pieces. One piece is the kernel of the contraction map R;;,, — R;ju’
The orthogonal complement can be viewed as the space of symmetric matri-
ces with 0(d) acting by similarity (x — o* xo0), and this piece splits into the
scalars plus symmetric matrices with spur O [19, Chap. 5]. Consequently,
the space of invariant polynomials of degree 2 is 3-dimensional, the 3 poly-
nomials 4, B, C exhibited in (2) provide us with a nice basis, and the cor-
responding part of k, is simply ¢4 + ¢,B + ¢,C with coefficients depending
(perhaps) on the dimension. The same still holds for dimensions 2 and 3,
except that

(4a) B=C=24 d=2),

which make the splitting simpler.
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Step 3. The part of k, which is an invariant form of degree 1 in second
covariant derivatives of R can only be obtained by a 3-fold contraction {19,
Chap. 5], and only 2 candidates present themselves: R, ;.. = —24K and
Riijx.i;» But, by the Bianchi identities,

Rixjris + Rixxingy + Ririjuey =0,
so the second candidate is half the first, and
(5) k2=C0A+C1B+CQC+C3AK

with coefficients depending upon dimension only.

Step 4 is to prove that the coefficients are dimension-free. This is done,
as in the proof of k, = K/3, by looking at a product M = M; X M,, RIM) =
R(M,)® R(M,), so

(62) AM) = AM,) + AM,) + 2K(M)K(M,),
(6b) B(M) = B(M,) + B(M,),

(6c) CM)y=CM,)+ CMy ;

also

(6d) eM) =eM,)®eM,),

and a comparison of the expansion
(Ta) 1+ ty(M) + BRM) + o) = 1 + S [K(M) + K(My)

+ 2 X {co(d)[AM,) + AM,) + 2K(M)K(M>)]
+ (DIBM,) + B(My)] + co(d)IC(M,) + C(M,)]
+ c3(4KM,) + 4K(M)]} + o(£%),

d being dim M, with the expansion
(76) (1 + thy(M)) + k(M1 + th(My) + 2ky(M.)] + o(f)
= 1+ ZIK(My) + KMy)] + £ [%K(M.)K(Mg)
+ Cod)AM,) + ci(d)B(M,) + cx(d)C(M,) + cx(dy)IK M)
+ Cod)AM:) + Ci(dDB(Ms) + csd)C(M) + cold)AK(M)
+ o(£)

in case M, is a flat torus [R(M,) = 0] shows that the expression
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(8) co(d)AMy) + ¢i(d)B(M,) + c(d)C(My) + c3(d)IK(M,)

is independent of d > d,. The fact that the coefficients are dimension-free
for d > 4 is immediate from this. For d < 3, the coefficients can be chosen
to be the same as for higher dimensions.

Step 5 is to compute the actual values of the coefficients. Comparison of
the terms involving K(M)K(M;) in (7a) and (7b). gives

(9a) - c, = 1/18,

and, from the TABLE placed at the beginning of this section,
(%b) ¢, = —1/180,

(9c)‘ ¢, =1/90,

so that only c; is still unknown. This completes the proof.

For d = 4, the integrand for Chern’s extension of the Gauss-Bonnet for-
mula {5] is easily evaluated as (82%)~'(4 — B + C/2). The formula states
that this integrates to the Euler characteristic £ of M, whence, for d = 4,

2x? 2
10a fk=__E f9A 3C/2) > 2R
(102) 2T 745 o O4F 2 45
(10b) M is a flat space if fk2=0andE >0,
(10c) fkg # 0 if M is simply connected ,

(10d) if the sectional curvatures of M do not change sign, then

sz = 0 only for a flat space,
while, for d < 3,
(10e) sz > 0 and f k, = O only for a flat space .

Proof. (10a) is immediate from Chern’s formula and (10b) follows, since
JC =0 makes M flat. E > 0 if M is simply connected. But a flat compact
space is not simply connected, so (10c) is proved. (10d) is proved in the same
way using the fact that E > 0 if the sectional curvatures of M do not change
sign [5]. The proof of (10e) is immediate from (1) and (4).

The computation of &, k,, etc. is a problem of classical invariant theory;
see for instance [17]. It looks pretty hopeless.
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8. Open problems

1°. For Q = 4, compute all the coeflicients of Minakshisundaran’s ex-
pansion (4.3) and explain the geometrical significance of each. It is an open
problem to find the corresponding corrections to Weyl’s formula (1.2). But
notice that even for M = §2, — y, does not behave like ¢_,n + ¢, + ¢;n~ +
etc. .

2°. Prove or disprove (6.4) for even d > 4; see (7. 10a) for partial in-
formation in case d = 4.

3°. J. Milnor [8] proved that the spectrum of 4 acting on the differential
forms of a closed manifold M is not sensitive enough to discriminate between
the possible Riemannian geometries on M. Milnor’s example depends upon
an example of E. Witt of 2 self-dual 16-dimensional lattices I", dissimilar
under the action of 0(16), but with #(R) = #(we I": | w | < R) the same for
both. Because the lattices are dissimilar, the tori M = R!$/]" are not iso-
metric. But the spectrum of 4 on functions is just the numbers 4z” | w |* with
w from I'. Because A(fdx;, A\ --- A dx;)) = (Mf)dx; A\ - -+ A dx;,, the spec-
trum of 4 on p-forms is the same, but just repeated 16!/p!(16 — p)! times,
so that the 2 tori are identical from the spectral point of view. Despite this ex-
ample, it may be possible to “hear” the geometry of M for small dimensions
(d = 2, for instance) or for a special class of manifolds (topological spheres,
for instance). Kac [6] has asked if the spectra of both 4° for a flat plane
region D suffice to determine D up to a rigid motion of k,; his conjecture is
no. If that is so then probably the complete geometry of a closed manifold
cannot be heard even for d = 2 and M a topological sphere. But it should’
be noted that for D = (0, 1), 0 < feC[0, 1], and Qu = fu’”’, f can be re-
covered from the spectra of Q* [2].

4°. Jacobi’s transformation of the theta-function shows that for 4 acting
on functions on a flat torus M = R?/I",

vol M

- la]*/4r
a/2 -e
(4rt) wel

Z= et =
vol M

ZW + an exponentially small error,
Z1)772

where I'* is the dual lattice of I'. Does there exist a Jacobi like transforma-
tion of Z for any other manifolds? To our knowledge the only similar thing
is the so-called Kramers-Wannier duality for the 2-dimensional 1SING model
of statistical mechanics. Both Kramers-Wannier and Jacobi’s transformation
are instances of Poisson’s summation formula [7]. Perhaps Selberg’s trace
formula could be helpful in this. A simple case to look at would be a compact
symmetric space M = G/K of rank 1, since the pole spe® is constant on M
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and can be computed using just the radial part A'la—;-AaiR of 4 (A = the

area of the spherical surface of radius R about the north pole). A second
interesting case would be that of a closed Riemann surface of genus > 2,
viewed as the open unit disc modulo a discontinuous group. One may con-
jecture that the breaking off the expansion of Z at the first (volume) term
happens for flat spaces only [see (7. 10) for the proof in case d < 3 and for
partial information in case d = 4].

5°. A Jacobi transformation for Z goes over into a Riemann like identity
for the zeta-like function }; |y, |~° via the transformation

rzl

Z_.F(s)-lf:ts-l(z — Dydt.

Minakshisundaram [9] used (4. 3) to prove that this zeta-function is mero-
morphic in the whole s-plane; see [11] for additional information. Expanding
Z as ¢yt~ 4% 4+ cyt792*1 L etc., one finds that the zeta-function has simple
poles with residues c, at the places d/2 — n(n > 0) if d is odd, (0 < n < d/2)
if d is even. For even d, the value of the zeta-function at s = 0 is ¢g,, = §kas2,
so that contact is made with R. Seeley’s computation of this number [15]
and with 2°,
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